IHT dies hard: Provable accelerated Iterative Hard Thresholding
نویسندگان
چکیده
We study –both in theory and practice– the use of momentum motions in classic iterative hard thresholding (IHT) methods. By simply modifying plain IHT, we investigate its convergence behavior on convex optimization criteria with non-convex constraints, under standard assumptions. In diverse scenaria, we observe that acceleration in IHT leads to significant improvements, compared to state of the art projected gradient descent and Frank-Wolfe variants. As a byproduct of our inspection, we study the impact of selecting the momentum parameter: similar to convex settings, two modes of behavior are observed –“rippling” and linear– depending on the level of momentum.
منابع مشابه
Alternating direction algorithms for ℓ0 regularization in compressed sensing
In this paper we propose three iterative greedy algorithms for compressed sensing, called iterative alternating direction (IAD), normalized iterative alternating direction (NIAD) and alternating direction pursuit (ADP), which stem from the iteration steps of alternating direction method of multiplier (ADMM) for `0-regularized least squares (`0-LS) and can be considered as the alternating direct...
متن کاملAccelerated iterative hard thresholding
The iterative hard thresholding algorithm (IHT) is a powerful and versatile algorithm for compressed sensing and other sparse inverse problems. The standard IHT implementation faces two challenges when applied to practical problems. The step size parameter has to be chosen appropriately and, as IHT is based on a gradient descend strategy, convergence is only linear. Whilst the choice of the ste...
متن کاملFast and Provable Algorithms for Spectrally Sparse Signal Reconstruction via Low-Rank Hankel Matrix Completion
A spectrally sparse signal of order r is a mixture of r damped or undamped complex sinusoids. This paper investigates the problem of reconstructing spectrally sparse signals from a random subset of n regular time domain samples, which can be reformulated as a low rank Hankel matrix completion problem. We introduce an iterative hard thresholding (IHT) algorithm and a fast iterative hard threshol...
متن کاملQuantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing
In this work, we show that reconstructing a sparse signal from quantized compressive measurement can be achieved in an unified formalism whatever the (scalar) quantization resolution, i.e., from 1-bit to high resolution assumption. This is achieved by generalizing the iterative hard thresholding (IHT) algorithm and its binary variant (BIHT) introduced in previous works to enforce the consistenc...
متن کاملDual Iterative Hard Thresholding: From Non-convex Sparse Minimization to Non-smooth Concave Maximization
Iterative Hard Thresholding (IHT) is a class of projected gradient descent methods for optimizing sparsity-constrained minimization models, with the best known efficiency and scalability in practice. As far as we know, the existing IHT-style methods are designed for sparse minimization in primal form. It remains open to explore duality theory and algorithms in such a non-convex and NP-hard prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.09379 شماره
صفحات -
تاریخ انتشار 2017